Empirical Average-case Relation between Undersampling and Sparsity in X-ray Ct.

نویسندگان

  • Jakob S Jørgensen
  • Emil Y Sidky
  • Per Christian Hansen
  • Xiaochuan Pan
چکیده

In X-ray computed tomography (CT) it is generally acknowledged that reconstruction methods exploiting image sparsity allow reconstruction from a significantly reduced number of projections. The use of such reconstruction methods is inspired by recent progress in compressed sensing (CS). However, the CS framework provides neither guarantees of accurate CT reconstruction, nor any relation between sparsity and a sufficient number of measurements for recovery, i.e., perfect reconstruction from noise-free data. We consider reconstruction through 1-norm minimization, as proposed in CS, from data obtained using a standard CT fan-beam sampling pattern. In empirical simulation studies we establish quantitatively a relation between the image sparsity and the sufficient number of measurements for recovery within image classes motivated by tomographic applications. We show empirically that the specific relation depends on the image class and in many cases exhibits a sharp phase transition as seen in CS, i.e., same-sparsity images require the same number of projections for recovery. Finally we demonstrate that the relation holds independently of image size and is robust to small amounts of additive Gaussian white noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testable uniqueness conditions for empirical assessment of undersampling levels in total variation-regularized x-ray CT

We study recoverability in fan-beam computed tomography (CT) with sparsity and total variation priors: how many underdetermined linear measurements suffice for recovering images of given sparsity? Results from compressed sensing (CS) establish such conditions for, e.g., random measurements, but not for CT. Recoverability is typically tested by checking whether a computed solution recovers the o...

متن کامل

How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray CT

We introduce phase-diagram analysis, a standard tool in compressed sensing, to the X-ray CT community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In compressed sensing a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram anal...

متن کامل

How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography

We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-...

متن کامل

Empirical correlation for porosity deduction from X-ray computed tomography (CT)

For obtaining reservoir petrophysical properties, for example porosity, non-destructive methods such as X-ray computed tomography, CT, seems to be precise and accurate. Porosity is deducted from the CT image with a single scan via different techniques, such as pore space detection by image segmentation techniques then correlation with porosity. More than one hundred samples with carbonate li...

متن کامل

Fast Splitting-Based Ordered-Subsets X-Ray CT Image Reconstruction

Using non-smooth regularization in X-ray computed tomography (CT) image reconstruction has become more popular these days due to the recent resurgence of the classic augmented Lagrangian (AL) methods in fields such as totalvariation (TV) denoising and compressed sensing (CS). For example, undersampling projection views is one way to reduce radiation dose in CT scans; however, this causes strong...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inverse problems and imaging

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2015